
8/13/23, 7:45 PM System Software Testing (25-SYTEST) - SDEVEN Software Development & Engineering Methodology

Page 1 of 9

Version: 7.0.13
Release date: 230810

System Software Testing (SDEVEN.25-SYTEST)

Table of Content

System Software Testing (SDEVEN.25-SYTEST)

Preliminaries

Why

When

Vocabulary

Test types

Testing and working environments

Environments and Information �ow

Development environment

Test environment

QA environment

Production environment

Test deliverables

Test Plan

Test Scenarios

System hardware requirements

Proof of Concept

Preliminaries

The testing is one of the most important activity in software development as long as a piece of software is NOT
written for own purposes.

SDEVEN Software Development & Engineering Methodology

8/13/23, 7:45 PM System Software Testing (25-SYTEST) - SDEVEN Software Development & Engineering Methodology

Page 2 of 9

Why

The testing may assure you that a piece of software do what was intended to do. This is "one face" but testing must
also assure the owner of the software for the same things. And �nally must assure the end users (generally the
customer) for same things, sometimes more things.

When

The testing should be done (conducted) �rst "internally" (ie, not in the presence of customer's people). Then some
more complex, elaborated tests should be done in the customer presence (for customer con�dence).

Vocabulary

The testing process will involve some speci�c terms and concepts like: compliance, bug, acceptable, workaround
solution, ... These terms are not necessarily new terms but they will make more sense, will get a more clear meaning
"if are seen" from testing perspective.

Test types

In testing process more test types will be conducted. The type of tests can be seen from more perspectives, but
those that relevant in this context are:

access to code perspective:

white box tests - apply when code is known and can be accessed and test that code by expecting some
behavior in known conditions

black box tests - apply without knowing the code but expecting some results for some given input - because
they address functionalities these are called functional tests

scope / range of code impact perspective:

unit, unitary tests - these tests apply on small code blocks (for example a function or a procedure)

integration tests - these test address more complex portions of code and are mainly "looking for" their good
working when interact one with others - in most cases these test are simply known as acceptance tests

performance and compliance perspective:

standards conformity - these ones seek to demonstrate the system conformity to some standards or
practices

performance - these ones seek to demonstrate the system performance in some given "stress" conditions,
also from these tests results what is known as System hardware requirements

More details regarding test types is out this document scope. They are fundamental learning units in software
engineering theory. The reason why some of them were listed here is to be aware that:

they are used and applied in current job operations

the other members of the team expect you to know what are them about

8/13/23, 7:45 PM System Software Testing (25-SYTEST) - SDEVEN Software Development & Engineering Methodology

Page 3 of 9

Testing and working environments

The basic assumption of testing theory is: the �nal produced system must be able run on different machines than
those where it was produced.

Using more than one environment is a must because:

anyway you use at least two environments, the one where you develop the software and another one where
the system application will be installed to be used

these two environments are not guaranteed to be identical and the one where the system application will be
installed you even do not know "how it looks like" - the only thing you can do is to make some recommendations
but that's all

so, at least an environment where you'll test the system is absolutely necessary and this should be different that
the one where you developed (or still developing) the system

Environments and Information �ow

Production environment is a real & live environment, where our customers work and operate their current business. IT IS
COMPLETELY FORBIDDEN TO ACCESS THAT ENVIRONMENT FOR NOT AUTHORIZED PERSONNEL.

The next diagram shows the most basic �ow of testing without extending it after delivery of product.

Production environment

8/13/23, 7:45 PM System Software Testing (25-SYTEST) - SDEVEN Software Development & Engineering Methodology

Page 4 of 9

local tests
alpha states

test work to
for beta states

�x bugs
continue

work

test work to
for release states

�x bugs
continue

work

�nal delivery

Development

Test

QA

Production

Testing flow

Diagram reveal the following environments:

development aka dev

test

qa

production aka prod

In some projects test and qa environments are combined in a single one usually called qa-test or simply test ,
environment who takes on the role of both.

Each environment will be treated in details in next sections.

Development environment

The development environment means all systems and tools you use to develop the software system (application,
product, etc). These could be on more than one device (for example use a phone or tablet to edit some �les, a git
repository to store them and a laptop to make some compilation, a git client to manipulate its data, a IDE tool to edit
code, a compiler to compile code, etc) the idea being that development environment does not means necessarily one
device.

test & qa combined

8/13/23, 7:45 PM System Software Testing (25-SYTEST) - SDEVEN Software Development & Engineering Methodology

Page 5 of 9

Could be situation when some simple devices are not enough to �nalize a development step and a more powerful
machine, a server is needed in that process. In this situations, dedicated servers are used for development and they
are called development servers.

The development environment is very tight and dedicated to a project and is not recommend to be reused from one
project to another. Development environment is also very speci�c to a person, each developer having his a�nity,
preferences and productivity by using different tools, and AS LONG AS THIS DOES NOT CREATE INTERFACE
PROBLEMS with the other team members or LICENSING ISSUES, its perfectly to use them (this is frequently happen
for code IDEs and editors).

So the development environment life is limited to one project or even only to a phase of a project. Development
environment can contain all things that developer (or the team if use a development server) consider necessary
to use. Especially when using development servers it is very useful if the development language / framework allow
for some instruments to isolate environments and clearly the should be used (examples are: Poetry or venv for
Pyrhon, composer for PHP and Laravel, cargo for Rust, etc).

Software versions resulted from development environment cannot be "graded" more than alpha .

Test environment

The test environment has the role to test the system on other completely different environment than the one in
which development was made.

Doing so, any software components, libraries, code parts, text �les characteristics, date or time stamps, user
environment data, operating system con�guration, or other kind of system particular con�guration WILL BE
DETECTED by making this kind of testing. Remember the basic objective of testing process: "the �nal produced
system must be able run on different machines".

The ideal test environment is obtained by cloning an existing production environment and if necessary (in case
the production machine is a "huge resources" one) make only "quantitative" adjustments, not qualitative ones (ie,
downsize not downgrade).

The test environment is MANDATORY to be limited to one project and one test phase. Other test phases will need
another test environment. (The test process can alter enough the environment so other tests to be irrelevant).

Software versions resulted from test environment are usually "graded" as beta . But this depends more on type of tests
conducted, ie, integration, functional, acceptance, etc.

Resulted version quality

Resulted version quality

8/13/23, 7:45 PM System Software Testing (25-SYTEST) - SDEVEN Software Development & Engineering Methodology

Page 6 of 9

Testing conducted in test are executed by and in presence of producer team. This is done exclusively in all cases is
possible this not being a matter of con�dence but a matter of fucus on "doing what you have to do and only this and now !"
- see also the section ref qa environment.

QA environment

The qa environment is absolutely identical with test environment and all things from test must be applied for qa .
The only difference is regarding the presence of customer team.

Testing conducted in qa are executed in presence of customer team and this is mandatory. For particular / producer only
tests, see the section ref test environment.

Production environment

The production environment is the place where the customer business re�ected by the (through) system is
happening. Live, real, with real data and critical as functioning (at least from the provider perspective).

Production environment is a real & live environment, where our customers work and operate their current business. IT IS
COMPLETELY FORBIDDEN TO ACCESS THAT ENVIRONMENT FOR NOT AUTHORIZED PERSONNEL.

There are no more things to say about production environment except the warning, production environment should
not be accessed, modi�ed, queried, etc, generally no operation.

Any intervention required in production environment must be done ONLY BY AUTHORIZED PERSONNEL AND ONLY
WITH CUSTOMER WRITTEN PERMISSION. Credentials for any component from production environment are
subject of customer strict con�dential data and "secrets". The customer must be instructed to change all
credentials used in environment setup phase.

All other operations regarding production environment (for example backup or update) are ONLY customer
responsibility.

Any copies of production environment can be made ONLY by customer authorized personnel and obtained ONLY
with customer representative consent.

Testing team

Testing team

Production environment

8/13/23, 7:45 PM System Software Testing (25-SYTEST) - SDEVEN Software Development & Engineering Methodology

Page 7 of 9

In production environment only release graded versions are allowed to be installed. Only as exceptions and:

for critical business reasons

from trusted sources versions beta graded will be allowed

Test deliverables

In order to be consistently applied and to be a proof of functioning, the testing process includes a series of activities
and a set of deliverables that will be explained in next sections.

Deliverables that must be created are:

Test Plan

Test Scenarios

System hardware requirements

Proof of Concept document (aka PoC or Acceptance document)

All these deliverables must be formally agreed by customer.

The following diagram summarizes the testing process.

Test Process
Planning

Test Running Proof of
concept

Concluding

Test Plan

Test Scenario x

Acceptance
document

System hardware
Requirements

Testing process and Deliverables

The following sections will discuss each deliverable focusing on its content and purpose. Those aspects that are not
always in the sphere of perfect (with zero deviation) but have a level of approximation and tolerance that must be
kept in a zone of comfort, trust and functional acceptability to not alter business operations.

Test Plan

The test plan is mainly a planning of test scenarios:

a summary list with all scenarios expected to be executed

a time frame in which each scenario execution will take place

a general objective (plan objective) that establish the goal of test plan execution, more exactly what acceptance
type is targeted

Accepted version grades

8/13/23, 7:45 PM System Software Testing (25-SYTEST) - SDEVEN Software Development & Engineering Methodology

Page 8 of 9

for each scenario which functionality(ies) will be demonstrated (not detailed because these are written in
scenario test)

required team for each scenario (at "mandatory / optional" level)

who approve the scenario resolution (pass or fail)

a pre-requisites list and different other requirements, IT, logistics, rooms, etc

who will execute each test scenario

The test plan should be considered a contractual and an o�cial document, so its change is subject of change
control procedure.

An electronic test plan template can be found here or use document Appendix_F1_TestPlan_template .

Test Scenarios

The test scenario is a form of veri�cation of a punctual, concrete functionality, which is completely de�ned, by this
understanding that its �nality is known exactly.

Through the test scenario, we aim to achieve a desired result for a series of known conditions. In other words, for
a known set of input data, it is veri�ed if the results are the expected ones. Thus, for each aspect that needs to be
checked, a test scenario will have to be created.

A test scenario must have (and guarantee) some qualities (properties, characteristics) which gives con�dence to
the person who decides whether the test result is CONFORM (PASS) or NON-CONFORM (FAIL). This can be done by:

establishing what means acceptable tolerance when comparing obtained result with the expected one - this
tolerance should be quanti�ed in any rational-measurable way

if test scenario has more than two or three particular cases (ie, if-cases), cases leading to results of different
natures, then the test scenario must be divided, separated in more test scenario one for each expected result
nature

tested case should be as smaller as possible but enough relevant for customer, more precisely, to avoid falling
into the trivial, irrelevant, useless

The scenario must have a series of small steps each one being clear ref:

what and how should be operated in system

what is the expected system behavior

what are the expected results

Each test scenario must be closed with a clear resolution PASS or FAIL. In case of fail some short recommendations
or explanation ref what should be done (these are subject to future bug �x issues).

An electronic test scenario template can be found here or use document Appendix_F2_TestScen_template .

Well de�ned test scenario

file:///D:/_T8_PROJECTS/8000-2030%20SDEVEN%20Metodologia%20Software%20Development%20and%20Engineering/830-DEV/static_portal/Appendix_F1_TestPlan_template.html
file:///D:/_T8_PROJECTS/8000-2030%20SDEVEN%20Metodologia%20Software%20Development%20and%20Engineering/830-DEV/static_portal/Appendix_F2_TestScen_template.html

8/13/23, 7:45 PM System Software Testing (25-SYTEST) - SDEVEN Software Development & Engineering Methodology

Page 9 of 9

System hardware requirements

This deliverable must show the necessary hardware requirements for the system (product, application) to run in
normal operating conditions and this is tight correlated with concept of system load.

To be able to estimate and to acceptable ful�ll this requirement, some volume metrics should be identi�ed, but these
ones must be relevant for system regarding loading situations. Loading is clearly a pure technical aspect and
should be FIRST established and de�ned (as system / application relevant metrics and units of measures) by
system architects and designers.

"Conversion" to hardware resources required to allow execution under those loading conditions is another pure
technical thing that should be de�ned (in terms of equivalence) by infrastructure specialized people.

Normally System hardware requirements deliverable should present the minimum requirements the system to run.
Is optional (but recommended) to present also the requirements for an optimal system run, or to offer a "way" to
determine how to calculate them when loading conditions are changing.

Level of details in System hardware requirements deliverable should be minimal regarding resource types (as these
change very rapidly in time...) but enough for a customer to be able to determine what to buy (or to make available)
in a reasonable way (for example regarding storage do not idicate the type of disks but only required capacity as
operating system can directly access, or for processing capacity do not indicate the CPU type but indicate the
number of unit of processing units, some necessary features like hardware virtualization, and so on).

Proof of Concept

This deliverable is the acceptance agreement as a formal con�rmation of test objectives (ie, from Test plan
document).

If the test plan was "well done" and formally agreed the it just will be referred in this document.

Also, is recommended that test scenarios (resulted after their execution) to be referred

Finally must remember that this document will become part of contract and will be the fundament of future �nancial
documents (for example invoice) and operations, so it must respect all legal requirements stated contractual
agreement between parts (customer and supplier). At least a brief review from legal perspective of this document is
strongly recommended.

The concrete form of this document is subject of contractual terms and cannot be generalized here.

Referred documents

Last update: August 13, 2023

